LONDON          -         When you think about hydrogen and flight, the image that comes to mind for most is the Hindenburg airship in flames.

But in a lab deep in the basement of Imperial College in London, a young team has built what it believes is the future of air travel. H2Go Power is seeking a patent to store the explosive gas cheaply and safely. Until now, storing hydrogen required ultra-strong and large tanks which could withstand pressures of up to 10,000 pound-force per square inch (psi). That is hundreds of times greater than what you would find in a car tyre.

But, while studying for her PhD in Cambridge, Dr Enass Abo-Hamed came up with a revolutionary structure which could store hydrogen as a stable solid without compression.

“The pressure involved is similar to what you’d get in a coffee machine,” she says.

The university paired her with materials scientist, Dr Luke Sperrin, to try to find commercial applications for the innovation - and H2Go Power was born.

Dr Sperrin is now chief technology officer. He and Dr Abo-Hamed formed a partnership with Canadian hydrogen fuel cell maker Ballard a year ago to create a drone which used their reactor to safely store hydrogen for flight.

Finally, after months of collaboration by phone and email, Dr Sperrin and chief product developer Peter Italiano flew to Boston for a ground-breaking test flight. “Of course you need really good weather to fly a drone,” smiles Dr Sperrin.

“And it poured with rain for the first few days. We weren’t even sure whether we’d even be able to go ahead.

The aluminium reactor weighs less than a bag of sugar.

The small gas cylinder has an intricate network of 3D-printed aluminium tubes inside.

The hydrogen remains stable and solid in these structures until “coolant” is pumped through the tubes, warming them and releasing hydrogen gas to the drone’s fuel cell

Hydrogen (H2) is pumped into one side of the fuel cell through a catalyst which frees electrons, creating electricity.

Oxygen (O) is then pumped into the other side of the fuel cell and combines with the left over, positively-charged hydrogen atoms (H+).