Islamabad                -          Scientists at Skolkovo Institute of Science and Technology (skoltech), together with colleagues from the Karl-Franzens University of Graz and the Kanzelhoehe Observatory (Austria) developed an automatic method for detecting “coronal dimmings,” or “traces” of coronal mass ejections at the Sun, and also proved that they are reliable indicators of the early diagnosis of powerful emissions of energy from the atmosphere of the Sun, traveling to Earth at great speed. Coronal mass ejections are among the most striking manifestations of solar activity. Huge plasma clouds pierced by magnetic lines are ejected from the atmosphere of the Sun into the surrounding space at speeds of 100-3500 km/s. If a stream of charged particles reaches the Earth, auroras and magnetic storms arise in its atmosphere. This can lead to serious problems in the operation of electrical equipment and signal loss, and spacecraft and astronauts in outer space are most exposed to danger. Coronal mass ejections occur in the atmosphere of the Sun, the solar corona, which is very sparse and does not shine as bright as the solar disk.