Recently, there’s a new equation revolving around the world of physics as if it is a Bollywood gossip. The equation is pretty easy to remember: ER=EPR and people think that it would have made Einstein very proud. Through this, researchers hope to solve some of the oldest paradoxical puzzles of the scientific world.

Unlike usual equations where letters represent numbers, the letters here represent names. E stands for Einstein while R and P refer to two of Einstein’s most fascinating research papers. According to Science News, “these letters express a possible path to reconciling Einstein’s general relativity with quantum mechanics.” Both theories; quantum mechanics and general relativity are found to be correct when put into test. They both describe our nature perfectly but even then, when scientists try to merge the theories mathematically, they fail. “So far nature has kept the form of their connection a secret”, says Science News.

In a recent paper, according to researcher Susskind the equation suggests that the key to their connection might be present in the spacetime tunnels, also called wormholes or Einstein-Rosen bridges. As suggested by Einstein’s general relativity, these tunnels would be like subspace shortcuts that physically link distant locations. According to this equation, it would be okay to say that all the quantum weirdness (such as its enlargement) that scientists have been stressing over for years can only be understood once its connection to gravity is known.

Sussking writes, “ER=EPR tells us that the immensely complicated network of entangled subsystems that comprises the universe is also an immensely complicated (and technically complex) network of Einstein-Rosen bridges. To me it seems obvious that if ER=EPR is true it is a very big deal, and it must affect the foundations and interpretation of quantum mechanics.” Apart from this, in his paper, Susskind also speaks about how quantum fields can also be entangled. He wrote that, “In the vacuum of a quantum field theory the quantum fields in disjoint regions of space are entangled,” he writes.

Not only Susskind but other researchers are working on this equation too. Physicists ChunJun Cao, Sean M. Carroll and Spyridon Michalakis recently came up with a paper discussing on how spacetime can be “built” from the vast network of quantum entanglement in the vacuum and how changes in “quantum states” can be linked to changes in spacetime geometry. “In this paper we take steps toward deriving the existence and properties of space itself from an intrinsically quantum description using entanglement,” they wrote.